###### Most Recent Project

#### Toric vector bundles and parliaments of polytopes

We introduce a collection of convex polytopes associated to a torus-equivariant vector bundle on a smooth complete toric variety. We show that the lattice points in these polytopes correspond to generators for the space of global sections and we relate edges to jets. Using the polytopes, we also exhibit toric vector bundles that are ample but not globally generated, and toric vector bundles that are ample and globally generated but not very ample.

Keep Reading...#### Other Projects

###### Sums of squares and varieties of minimal degree

Let X be a real nondegenerate projective subvariety such that its set of real points is Zariski dense. We prove that every real quadratic form that is nonnegative on X is a sum of squares of linear forms if and only if X is a variety of minimal degree. This substantially extends Hilbert's celebrated characterization of equality between nonnegative forms and sums of squares. We obtain a complete list for the cases of equality and also a classification of the lattice polytopes Q for which every nonnegative Laurent polynomial with support contained in 2Q is a sum of squares

Keep Reading...