Menu Close

Stellar discovery by Queen’s researcher

The polarity of the star’s surface magnetic field, north or south, is indicated by red and blue respectively. Yellow lines indicate the magnetic field lines running from the stellar surfaces. Credit: Visualisation courtesy of Volkmar Holzwarth, KIS, Freiburg

PhD candidate Matt Shultz has discovered the first massive binary star, epsilon Lupi, in which both stars have magnetic fields. A binary star is a star system consisting of two or more stars, orbiting around their common centre of mass.

For the past few years, the BinaMIcS (Binarity and Magnetic Interactions in various classes of Stars) collaboration, formed to study the magnetic properties of close binaries, has been trying to find such an object. They have now discovered one using the Canada-France-Hawaii Telescope.

“The origin of magnetism amongst massive stars is something of a mystery,” says Mr. Shultz (Physics, Engineering Physics and Astronomy), “and this discovery may help to shed some light on the question of why these stars have magnetic fields.”

In cool stars, such as the Sun, magnetic fields are generated by a convection in the outer portion of the star. However, there is no convection in the outer layers of massive star, so there is no support for a magnetic dynamo. Nevertheless, approximately 10 per cent of massive stars have strong magnetic fields.

Two explanations have been proposed for the origin of massive star magnetic fields, both variants on the idea of a so-called “fossil” magnetic field, which is generated at some point in the star’s past and then locked in to the star’s outer portion.

Read the full story in the Queen’s Gazette.

The research was published in the Monthly Notices of the Royal Astronomical Society.