Queen's University

The Spectroscopy and H-band Imaging of Virgo Cluster Galaxies (SHIVir) Survey: Scaling Relations and the Stellar-to-total Mass Relation

Graph for St├ęphane Courteau's research project relating t o Imaging of Virgo Cluster GalaxiesWe present here parameter distributions and fundamental scaling relations for 190 galaxies as part of the Spectroscopy and H-bang Imaging of Virgo cluster galaxies (SHIVir) survey. We find the distribution of galaxy velocities to be bimodal about $V_{\rm circ} \sim 125$ km ${\rm s^{-1}}$, hinting at the existence of dynamically unstable modes in the inner regions of galaxies. An analysis of the Tully-Fisher relation (TFR) of late-type galaxies (LTGs) and fundamental plane (FP) of early-type galaxies (ETGs) is also presented, yielding a compendium of galaxy scaling relations. The slope and zero-point of the Virgo TFR match those of field galaxies, while scatter differences likely reflect distinct evolutionary histories. The velocities minimizing scatter for the TFR and FP are measured at large apertures where the baryonic fraction becomes subdominant. While TFR residuals remain independent of any galaxy parameters, FP residuals (i.e. the FP "tilt") correlate strongly with the dynamical-to-stellar mass ratio, yielding stringent galaxy formation constraints. Furthermore, we construct a stellar-to-total mass relation (STMR) for ETGs and LTGs and find linear but distinct trends over the range $M_{*} = 10^{8-11} M_{\odot}$. Stellar-to-halo mass relations (SHMRs), which probe the extended dark matter halo, can be scaled down to masses estimated within the optical radius, showing a tight match with the Virgo STMR at low masses; however, possibly inadequate halo abundance matching prescriptions and broad radial scalings complicate this comparison at all masses. While ETGs appear to be more compact than LTGs of the same stellar mass in projected space, their mass-size relations in physical space are identical. The trends reported here call for validation through well-resolved numerical simulations. (Read More)